
FINAL VERSION TCYB-E-2018-08-1684 1

Two Dimensional Stochastic Configuration
Networks for Image Data Analytics

Ming Li, Member, IEEE, Dianhui Wang*, Senior Member, IEEE

Abstract—Stochastic configuration networks (SCNs) as a class
of randomized learner model have been successfully employed
in data analytics due to its universal approximation capabil-
ity and fast modelling property. The technical essence lies in
stochastically configuring the hidden nodes (or basis functions)
based on a supervisory mechanism rather than data-independent
randomization as usually adopted for building randomized neural
networks. Given image data modelling tasks, the use of one-
dimensional SCNs potentially demolishes the spatial information
of images, and may result in undesirable performance. This paper
extends the original SCNs to a two-dimensional version, termed
2DSCNs, for fast building randomized learners with matrix
inputs. Some theoretical analyses on the goodness of 2DSCNs
against SCNs, including the complexity of the random param-
eter space and the superiority of generalization, are presented.
Empirical results over one regression example, four benchmark
handwritten digit classification tasks, two human face recognition
datasets, as well as one natural image database, demonstrate
that the proposed 2DSCNs perform favourably and show good
potential for image data analytics.

Index Terms—2D stochastic configuration networks, Random-
ized algorithms, Image data analytics.

I. INTRODUCTION

With the rising wave of deep learning, neural networks, by
means of their universal approximation capability and well-
developed learning techniques, have achieved great success in
data analytics [1]. Usually, the input layer of a fully connected
neural network (FCNN) is fed with vector inputs, rather than
two-dimensional matrices such as images or higher dimen-
sional tensors like videos or light fields [2]–[4]. Technically,
the vectorization operation makes the dot product (between
the inputs and hidden weights) computationally feasible but
inevitably induces two drawbacks: (i) the dimensionality curse
issue when the number of training samples is limited; (ii) the
loss of spatial information of the original multi-dimensional
input. Although convolutional neural networks (CNNs) have
brought about some breakthroughs in image data modelling,
by means of their good potential in abstract feature extraction,
power in local connectivity and parameter sharing, etc. [5], the
development of FCNNs with matrix inputs (or multidimen-
sional inputs in general) is of great importance in terms of

M. Li is with the School of Information Technology in Education, South
China Normal University, Guangzhou, China, and also with the Department
of Computer Science and Information Technology, La Trobe University,
Melbourne, VIC 3086, Australia. (e-mail: ming.li.ltu@gmail.com).

D. Wang is with the Department of Computer Science and Information
Technology, La Trobe University, Melbourne, VIC 3086, Australia, and is
also with the State Key Laboratory of Synthetical Automation for Process
Industries, Northeastern University, Shenyang, Liaoning 110819, China. (e-
mail: dh.wang@latrobe.edu.au).

* Corresponding author

both theoretical and algorithmic viewpoints. In [6], Gao et al.
first nominated the term matrix neural networks (MatNet) and
extended the conventional back-prorogation (BP) algorithm
[7] to a general version that is capable of dealing with 2D
inputs. The empirical results in [6] and their parallel work
[8] demonstrate the advantages of MatNet for image data
modelling. Obviously, MatNet may still suffer some intrinsic
drawbacks of gradient descent-based approaches such as local
minimum and low convergence rate. This indicates an urgent
need to develop fast learning techniques to build FCNNs with
2D inputs, as an immediate motivation of this work.

Randomized learning techniques have demonstrated their
great potential in fast building neural network models and
algorithms with less computational cost [9]. In particular,
random vector functional-link (RVFL) networks developed in
the early 90s [10], [11] and stochastic configuration networks
(SCNs) proposed recently [12] are two representatives of
the randomized learner models. Technically, the success of
SCNs and their extensions [13]–[17] in fast building universal
approximators with randomness has been extensively demon-
strated on data analytics. Generally, the very heart of the SCN
framework lies in the supervisory (data-dependent) mechanism
used to stochastically (and incrementally) configure the input
weights and biases from an appropriate ‘support range’. In
the presence of multi-dimensional input, especially 2D input
(e.g. images), both RVFL networks and SCNs require a
regular vectorization operation before feeding the given input
signal into the neural network model. The authors of [18]
made a first attempt on two dimensional randomized learner
models by developing RVFL networks with matrix inputs
(termed 2DRVFL) with applications in image data modelling.
Although some advantages of the 2D model are experimental-
ly demonstrated, the concerned methodology/framework still
suffers from the drawbacks of RVFL networks [19], [20].

This paper develops two dimensional SCNs on the basis
of our previous SCN framework [12], aiming to fast build
2D randomized learner models that are capable of resolving
data anlytics with matrix inputs. We first provide a de-
tailed algorithmic implementation for 2DSCN, followed by
a convergence analysis with special reference to the universal
approximation theorem of SCNs. Then, some technical differ-
ences between 2DSCN and SCN are presented, highlighting
in various aspects, such as the support range for random
parameters, the complexity for parameter space and data
structure preservation. Interestingly, our work is the first to
consider a potential relationship between 2DSCN and CNN in
problem-solving, that is, the computations involved in 2DSCN
in some sense can be viewed as equivalent to the ‘convolution’

FINAL VERSION TCYB-E-2018-08-1684 2

and ‘pooling’ tricks performed in the CNN structure. Later,
some technical issues around why randomized learner models
produced by the 2DSCN algorithm are more prone to have
a better generalization ability are investigated in-depth. In
particular, some solid results from statistical learning theory
are revisited with our special interpretation, for the purpose of
a qualitative analysis of learner models’ generalization power
and useful insights into certain very influential factors. Further-
more, we provide an intuitive sense that 2DSCN may exhibit a
similar philosophy as that in DropConnect [21] to effectively
alleviate over-fitting. Importantly, to make a reasonable and
practical judgement on the generalization ability of an obtained
randomized learner model, we focus our efforts on developing
a nearly sharp estimation of the model’s test error upper
bound, thereby one can effectively predict the generalization
performance. An extensive experimental study on both regres-
sion and classification problems demonstrates the remarkable
advantages of 2DSCN on image data modelling, compared to
some existing shallow randomized learning techniques as well
as some classic deep CNNs. Overall, our main contributions
can be summarized as three-fold:

• From the algorithmic perspective, we extend our original
SCN framework [12] to a 2D version, and the proposed
2DSCN algorithm can more effectively deal with data
modelling tasks with matrix inputs, compared with some
existing randomized learning techniques;

• Theoretically, the universal approximation property of
2DSCN-based learner models is verified and some tech-
nical differences between 1D and 2D randomized learner
models are investigated in terms of various perspectives.
Importantly, we provide an upper bound for the test error
of a given randomized learner model, and demonstrate in
theory how the hidden layer output matrix (computation-
ally associated with the training inputs, the hidden input
weights and biases, the number of hidden nodes, etc.)
and the output weights can affect the randomized learner
model’s generalization power.

• For practical applications, the merits of the developed
2DSCN on image data analytics are illustrated on various
benchmarks, including the rotation angle prediction for
handwritten digits, handwritten digit classification, hu-
man face recognition, and CIFAR-10 image classification.
Different from deep CNN models that seem dominant in
deep learning area, 2DSCN, which belongs to the class
of shallow randomized learner models, can provide an
alternative method of image data modelling.

The remainder of this paper is organized as follows. Section
II overviews some related work, including the 2D random
vector functional link (RVFL) networks and our original SCN
framework. Section III details the proposed 2D stochastic con-
figuration networks (2DSCNs) with algorithmic descriptions,
technical highlights, and some theoretical explanations, aiming
to distinguish 2DSCN from the other randomized learning
techniques. Section IV presents the experimental study in
terms of both image-based regression and classification prob-
lems, and Section V concludes this paper with further remarks.

II. RELATED WORK

A. 2DRVFL Networks

2DRVFL networks with matrix inputs were empirically
studied in [18]. Technically, it can be viewed as a trivial
extension of the original RVFL networks in computation
by employing two sets of input weights acting as a matrix
transformation over the left and right sides of the inputs. Here
we start directly with the problem formulation for 2DRVFL,
rather than revisit the basics of RVFL networks. Given N
training instances (xi, ti) sampled from an unknown function,
with inputs xi ∈ Rd1×d2 , outputs ti ∈ Rm, training a
2DRVFL learner model with L hidden nodes is equivalent to
solving a linear least squares (LS) problem (w.r.t the output
weights), i.e,

min
β1,...,βj

N∑
i=1

‖
L∑
j=1

βjφ(uTj xivj + bj)− ti‖2,

where uj , vj , bj are randomly assigned from [−λ, λ]d1 ,
[−λ, λ]d2 , [−λ, λ], respectively and remain fixed. g(·) is the
activation function.

The above LS problem can be represented by a matrix form,
i.e.,

β∗ = arg min
β
‖Hβ − T‖2F (1)

where

H =

 g(uT1 x1v1 + b1) · · · g(uTLx1vL + bL)
... · · ·

...
g(uT1 xNv1 + b1) · · · g(uTLxNvL + bL)

is the hidden layer output matrix, T = [t1, t2, . . . , tN]T, β =
[β1, β2, . . . , βL]T. A closed form solution can be obtained by
using the pseudo-inverse method, i.e., β∗ = H†T .

Remark 1. Although RVFL networks (with either vector
or matrix inputs) allow fast building a model by randomly
assigning input weights and biases, some key technical issues
are still unresolved. Theoretically, the approximation error
for this kind of randomized learner model is bounded in
the statistical sense, which means preferable approximation
performance is not guaranteed for every random assignment of
the hidden parameters [11]. Furthermore, it has been proved
that in the absence of such additional conditions, one may
observe exponential growth in the number of terms needed
to approximate a non-linear map, and/or the resulting learner
model will be extremely sensitive to the parameters [19]. From
an algorithmic perspective, all these theoretical predictions do
not address the learning algorithm or implementation issues
for the randomized learner. The practical usage of this kind of
randomized model encounters one key technical difficulty, that
is, how to find an appropriate range for randomly assigning
hidden parameters with considerable confidence to ensure the
universal approximation property. So far, the most accurate
(and trivial) way for implementing RVFL networks should em-
ploy trial-and-error/rule-of-thumb for parameter setting, that
is to say, one needs to perform various setting of λ before
obtaining an acceptable learner model. This trick sounds
practical but it still has potential drawbacks due to uncertainty

FINAL VERSION TCYB-E-2018-08-1684 3

caused by the randomness, as theoretically and empirically
studied in [20]. We also note that one can try out different
random selection ranges for uj and vj in 2DRVFL, such as
uj ∈ [−λ1, λ1]d1 and vj ∈ [−λ2, λ2]d2 , but may need more
grid-searching in algorithm implementation to find out the
’best’ collection {λ∗1, λ∗2}.

B. SCN framework

Our recent work [12] is the first to touch on the foundation
of building a universal approximator with random basis func-
tions. More precisely, a new type of randomized learner model,
termed stochastic configuration networks (SCNs), is developed
by implanting a ‘data-dependent’ supervisory mechanism to
the random assignment of input weights and biases.

Let Γ := {g1, g2, g3...} represent a set of real-valued
functions, and span(Γ) stands for the associated function space
spanned by Γ. L2(K) denotes the space of all Lebesgue
measurable functions f = [f1, f2, . . . , fm] : Rd → Rm

defined on K ⊂ Rd, with the L2 norm defined as

‖f‖ :=

(
m∑
q=1

∫
D

|fq(x)|2dx

)1/2

<∞. (2)

Given another vector-valued function φ = [φ1, φ2, . . . , φm] :
Rd → Rm, the inner product of φ and f is defined as

〈f, φ〉 :=

m∑
q=1

〈fq, φq〉 =

m∑
q=1

∫
K

fq(x)φq(x)dx. (3)

Note that this definition becomes a trivial case when m = 1,
corresponding to a real-valued function defined on a compact
set.

Before revising the universal approximation theory behind
SCNs, we recall the problem formulation as follows. For a tar-
get function f : Rd → Rm, suppose that we have already built
a neural network learner model with only one hidden layer and
L − 1 hidden nodes, i.e, fL−1(x) =

∑L−1
j=1 βjgj(w

T
j x + bj)

(L = 1, 2, . . ., f0 = 0), with βj = [βj,1, . . . , βj,m]T, and
residual error eL−1 = f − fL−1 = [eL−1,1, . . . , eL−1,m] far
from an acceptable accuracy level, our SCN framework can
successfully offer a fast solution to incrementally add βL,
gL (wL and bL) leading to fL = fL−1 + βLgL until the
residual error eL = f − fL falls into an expected tolerance ε.
The following Theorem 1 restates the universal approximation
property of SCNs, corresponding to Theorem 7 in [12].

Theorem 1. Suppose that span(Γ) is dense in L2 space
and ∀g ∈ Γ, 0 < ‖g‖ < bg for some bg ∈ R+. Given 0 <
r < 1 and a nonnegative real number sequence {µL} with
limL→+∞ µL = 0, µL ≤ (1 − r), for L = 1, 2, . . ., denoted
by

δL =

m∑
q=1

δL,q, δL,q = (1−r−µL)‖eL−1,q‖2, q = 1, 2, . . . ,m,

(4)
if the random basis function gL is generated to satisfy the
following inequalities:

〈eL−1,q, gL〉2 ≥ b2gδL,q, q = 1, 2, . . . ,m, (5)

and the output weights are evaluated by

[β1, β2, . . . , βL] = arg min
β
‖f −

L∑
j=1

βjgj‖, (6)

it holds that limL→+∞ ‖f−fL‖ = 0, where fL =
∑L
j=1 βjgj ,

βj = [βj,1, . . . , βj,m]T.
Remark 2. We would like to highlight that SCNs outper-

forms several existing randomized learning techniques (e.g.
RVFL networks) that employ a totally data-independent ran-
domization in the training process, and demonstrate consider-
able advantages in building fast learner models with a sound
learning and generalization ability. It implies a good potential
for dealing with online stream and/or big data analytics.
Recently, some extensions of SCNs were proposed from
various viewpoints. In [15], we have generalized our SCNs
to a deep version, termed as DeepSCNs, with both theoretical
analysis and algorithm implementation. It has been empirically
illustrated that DeepSCNs can be constructed efficiently (much
faster than other deep neural networks) and share many signifi-
cant features, such as learning representation and a consistency
property between learning and generalization. Furthermore, in
[13], [16], we built robust SCNs for the purpose of uncertain
data modelling. This series of work to some extent exhibits
the effectiveness of the SCN framework and showcases an
advisable and useful way to study/implant randomness in
neural networks.

III. 2D STOCHASTIC CONFIGURATION NETWORKS

This section details our proposal for two dimensional s-
tochastic configuration networks (2DSCN). First, based on our
original SCN framework, we can straightforwardly present
the algorithm description for 2DSCN, followed by theoreti-
cally verifying the convergence property. Then, a comparison
around some technical points between these two methods is
discussed. Afterwards, a theoretical analysis is provided as to
why randomized learner models with 2D inputs have a good
potential for inducing better generalization.

A. Algorithm Implementation
On the basis of the SCN framework, the problem of building

2DSCN can be formulated as follows. Given a target function
f : Rd1×d2 → Rm, suppose that a 2DSCN with L − 1
hidden nodes has already been constructed, that is, fL−1(x) =∑L−1
j=1 βjgj(u

T
j xvj + bj) (L = 1, 2, . . ., f0 = 0), where

g(·) represents the activation function, uj ∈ Rd1 , vj ∈ Rd1
stand for the collection of input weights (to be stochastically
configured with certain constraints), βj = [βj,1, . . . , βj,m]T

are the output weights. With the current residual error denoted
by eL−1 = f − fL−1 = [eL−1,1, . . . , eL−1,m], which as
supposed does not reach a pre-defined tolerance level, our
objective is to quickly generate a new hidden node gL (in
lieu of uL, vL, and bL) so that the resulting model fL has an
improved residual error after evaluating all the output weights
β1, β2, . . . , βL based on a linear least squares problem.

Suppose we have a training dataset with inputs X =
{x1, x2, . . . , xN}, xi ∈ Rd1×d2 and its corresponding out-
puts T = {t1, t2, . . . , tN}, where ti = [ti,1, . . . , ti,m]T ∈

FINAL VERSION TCYB-E-2018-08-1684 4

Rm, i = 1, . . . , N , sampled based on a target function
f : Rd1×d2 → Rm. Denoted by eL−1 := eL−1(X) =
[eL−1,1(X), eL−1,2(X), . . . , eL−1,m(X)]T ∈ RN×m as the
corresponding residual error vector before adding the L-
th new hidden node, where eL−1,q := eL−1,q(X) =
[eL−1,q(x1), . . . , eL−1,q(xN)] ∈ RN with q = 1, 2, . . . ,m.
With N two-dimensional inputs {x1, x2 . . . , xN}, the L-th
hidden node activation can be expressed as

hL := hL(X) = [gL(uTLx1vL+bL), . . . , gL(uTLxNvL+bL)]T,
(7)

where uL ∈ Rd1 and vL ∈ Rd2 are input weights, bL is the
bias.

Denote a set of temporal variables ξL,q, q = 1, 2, ...,m as
follows:

ξL,q =

(
eTL−1,q hL

)2
hTLhL

− (1− r)eTL−1,qeL−1,q. (8)

Based on Theorem 1, it is natural to think about the inequality
constrain for building 2DSCN by letting

∑m
q ξL,q ≥ 0.

After successfully adding the L-th hidden node (gL), the
current hidden layer output matrix can be expressed as HL =
[h1, h2, . . . , hL]. Then, the output weights are evaluated by
solving a least squares problem, i.e.,

β∗ = arg min
β
‖HLβ − T‖2F = H†LT, (9)

where H†L is the Moore-Penrose generalized inverse [22] and
‖ · ‖F represents the Frobenius norm.

B. Convergence Analysis

The key to verify the convergence of Algorithm 1 is
to analyze the universal approximation property of 2DSCN.
Recall the proof of Theorem 1 (Theorem 7 in [12]), one
can observe that it is the inequality constraints that dominate
the whole deduction, rather than the form of input weights
(either vector or matrix). In fact, it still holds that ‖eL‖ is
monotonically decreasing and convergent, ‖eL‖2 ≤ r‖eL−1‖2
for a given r ∈ (0, 1). Therefore, limL→+∞ ‖eL‖ = 0.

We remark that the r value varies during the whole in-
cremental process and the same approach intuitively applies
to verify the convergence. Also, it sounds logical to set
r as a sequence with monotonically increasing values, be-
cause it will become more difficult to meet the inequality
condition after a considerable amount of hidden nodes are
successfully configured. To some extent, this user-determined
(and problem-dependent) parameter affects the algorithm’s
convergence speed. In particular, one can set r sequence
(monotonically increasing) with an initial value quite close to
one, which can ease the configuration phase when adding one
hidden node as the inequality condition can be easily satisfied.
Alternatively, a user can start with a relatively small value (but
not too small), which however requires more configuration
trials at one single step to find suitable input weights and
biases that fit the inequality condition. This can lead to a
huge computational burden or even more unnecessary fails

Algorithm 1: 2D Stochastic Configuration Networks (2DSCN)

Input : Training inputs X = {x1, x2, . . . , xN}, xi ∈ Rd1×d2 ,
outputs T = {t1, t2, . . . , tN}, ti ∈ Rm; The maximum
number of hidden nodes Lmax; The expected error tolerance ε;
The maximum times of random configuration Tmax; Two sets
of scalars Υ = {λ1, . . . , λend} and R = {r1, . . . , rend}

Output: A 2DSCN model

1 Initialization: e0 := [tT1 , t
T
2 , . . . , t

T
N]T, Ω,W := [];

2 while L ≤ Lmax and ‖e0‖F > ε do
3 for λ ∈ Υ do
4 for r ∈ R do
5 for k = 1, 2 . . . , Tmax do
6 Randomly assign uL, vL, bL from [−λ, λ]d1 ,

[−λ, λ]d2 , [−λ, λ], respectively;
7 Calculate hL by Eq. (7), and ξL,q by Eq. (8);
8 if min{ξL,1, ξL,2, ..., ξL,m} ≥ 0 then
9 Save wL and bL in W , ξL=

∑m
q=1ξL,q in Ω;

10 else
11 go back to Step 5;
12 end
13 end
14 if W is not empty then
15 Find (u∗L, v

∗
L, b

∗
L) maximizing ξL in Ω, and set the

hidden output matrix HL = [h∗1, h
∗
2, . . . , h

∗
L];

16 Break (go to Step 23);
17 else
18 Continue: go to Step 5;
19 end
20 end
21 end
22 Calculate β∗ = [β∗

1 , β
∗
2 , . . . , β

∗
L]T based on Eq. (9);

23 Calculate eL = HLβ
∗ − T and renew e0 := eL, L := L+ 1;

24 end
25 Return:L∗, β∗, u∗, v∗, b∗.

during the configuration phase. Since the convergence property
is guaranteed theoretically, one can think about some practical
guidelines for setting the r sequence with reference to their
practical task. Based on our experience, the first trick, i.e.,
initializing r with a value close to one and then monotonically
increasing (progressively approaching one), is more feasible in
algorithm implementation. Additionally, Lines 14-19 use the
same trick performed in SCN (Remark 7, in particular) [12]
to make the structure of 2DSCN more compact. In practice,
larger ξL,q can contribute to a faster decrease of the residual
error, i.e., u∗L, v

∗
L, b
∗
L maximizing ξL in Ω can result in the

best candidate to form the hidden layer matrix.

C. Comparison with SCNs
1) Support Range for Random Parameters: Technically,

2DSCN still inherits the essence of our original SCN frame-
work, that is, stochastically configuring basis functions in
light of a supervisory mechanism (see Theorem 1). This
kind of data-dependent randomization can effectively and
efficiently locate the ‘support range’, where one can randomly
generate hidden nodes with insurance for building universal
approximators. Despite this common character, the differences
between support ranges induced by these two methods should
be highlighted. Computationally, it holds that

uTxv = Tr(uTxv) = Tr(xvuT)

= Tr((uv)Tx) = (vec(uvT))Tvec(x),

where Tr denotes the matrix trace, u ∈ Rd1 , v ∈ Rd2 ,
vec(·) ∈ Rd1d2 stands for vectorization of a given 2D array.

FINAL VERSION TCYB-E-2018-08-1684 5

We observe that although (vec(uvT))Tvec(x) can be viewed
as a regular dot product (between the hidden weight vector
and input) computation performed in SCN, the resulting
(d1d2)-dimensional vector vec(uvT) may exhibit a different
distribution, in contrast to a random (d1d2)-dimensional vector
from SCN-induced support range.

We should also note that there is no special requirements
for the initial distribution of u and v performed in the
algorithm implementation. For instance, one can set two
different range parameter sets Υu = {λu1 , . . . , λuend} and Υv =
{λv1, . . . , λvend} respectively in their experimental setup. If so,
in algorithm design, one more loop is needed for searching
the appropriate λv from Υv when λu is chosen and fixed,
or vice versa. Since the universal approximation capability
is always guaranteed, this complex manipulation sounds not
computationally efficient in practical implementation . For
simplicity, we use the same random range setting for u and v,
i.e., merely Υ, as noted in step 3 of the above Algorithm 1.

In practice, u or v, which can be viewed as row/column-
direction hidden weight, has its own support range, which
relies on their initially employed distribution (Υu or Υv) and
the inequality constraint for hidden node configuration.

2) Parameter Space: Despite the fact that neural networks
can universally approximate complex multivariate functions,
they still suffer from difficulties on high-dimensional problems
where the number of input features is much larger than the
number of observations. Avoiding high-dimensional inputs
and seeking useful input features to alleviate overfitting are
important and essential for the majority of machine learning
techniques. It is clear that one 2DSCN model with L hidden
nodes has L d1-dimensional weights and L d2-dimensional
input weights, L biases (scalar), L m-dimensional output
weights, that is, L× (d1 + d2 + 2) parameters in total; whist
the SCN model with the same structure has L (d1 × d2)-
dimensional input weights and the same amount of biases and
output weights, i.e., L×(d1d2 +1+m) parameters altogether.
Technically, in SCN, it can impose a high dimensional pa-
rameter space that may cause potential difficulties in meeting
the stochastic configuration inequality (5), especially when the
number of training samples is far lower than the dimensionality
of the input weights. Furthermore, for a relatively large L,
a huge memory is needed for saving L × (d1d2 + 1 + m)
parameters in computation. On the contrary, 2DSCN can
effectively ease the high-dimensional issue and to some extent
economize physical memory in practice.

3) Data Structure Preservation: It sounds logical that 2D-
SCN has several advantages in preserving the spatial details of
the given input images as it cares about the 2D-neighborhood
information (the order in which pixels appear) of the input
rather than the simple vectorization operation performed in
SCN. This argument has been raised and is commonly ac-
cepted in literature, however, there is no sufficient scientific
evidence verifying why and how the vectorization trick affects
the structural information of the 2D inputs. In this part, we
examine the resemblance between 2DSCN methodology and
convolutional neural networks (CNNs) in terms of computa-
tional perspective. A schematic diagram is plotted in Fig. 1
and corresponding explanations are as follows.

Recall Eq. (10), the left low-dimensional vector uT is acting
as a ‘filter’ to extract some random features from the 2D
input x. In other words, each column of x is now considered
as a block, i.e., image x = [x1, x2, . . . , xd2] is supposed to
be represented by d2 block-pixels, then uTx can be viewed
as a ‘convolution’ operation between the ‘filter’ uT (of size
1 × d1) and the input x along the vertical direction, leading
to a feature map [uTx1, u

Tx2, . . . , u
Txd2]. Then, a ‘pooling’

operation, conducted by calculating a weighted sum of the
obtained feature map, is used to aggregate feature information.
As a conjecture, 2DSCN might have some technical merits in
common with CNNs for image data analytics. More theoretical
and/or empirical research on this judgment is left for our future
study.

�

Input Image

‘convolution along vertical direction’ ‘pooling’ by weighted sum

!

Non-Linear

Activation

act as a filter

……

‘feature map’

Block-pixel

Fig. 1. Schematic diagram of computational equivalence between 2DSCN
and CNN.

D. Superiority in Generalization

In this section, we investigate in-depth why 2DSCN (and
2DRVFL) potentially leads to a better generalization perfor-
mance than SCN (and RVFL). Four supportive theories (ST1
to ST4) are presented to explain our intuitive prediction, that
is, the stochastically configured input weights and biases of
2DSCN to a great extent are more prone to result in lower
generalization error.

ST1: Learning Less-Overlapping Representations. Typi-
cally, elements of a weight vector have one-to-one corre-
spondence with observed features and a weight vector is
oftentimes interpreted by examining the top observed fea-
tures that correspond to the largest weights in this vector.
In [23], the authors proposed a non-overlapness promoting
regularization learning framework to improve interpretability
and help alleviate overfitting. It imposes a structural constraint
over the weight vectors, thus can effectively shrink the com-
plexity of the function class induced by the neural network
models and improve the generalization performance on unseen
data. Assuming that a model is parameterized by L vectors
W = {w̄i}Li=1, [23] proposed a hybrid regularizer consisting
of an orthogonality-promoting term and sparsity-promoting
term, denoted by

Ω(W) = tr(M)− log det(M) + γ

L∑
i=1

‖w̄i‖l1 ,

where M is the Gram matrix associated with W , i.e., Mi,j =
w̄T
i w̄j , γ is a tradeoff parameter between these two regulariz-

ers.

FINAL VERSION TCYB-E-2018-08-1684 6

The first term tr(M) − log det(M) controls the level of
near-orthogonality over the weight vectors from W , while the
second term

∑L
i=1 ‖w̄i‖l1 encourages wi ∈ W to have more

elements close to zero. It is empirically verified that this hybrid
form of regularizer can contribute to learner models with a
better generalization performance [23].

Hence, in light of our research, we can roughly explain
why 2D models (2DSCN and 2DRVFL) can outperform 1D
models (SCN and RVFL), and simultaneously, why SCN-
based models are better than RVFL-based ones: (i) generally,
there is no big difference between SCN and 2DSCN on
the near-orthogonal level of W , however, random weights
in 2DSCN can have a higher level of sparsity than that in
SCN, hence leading to a smaller

∑L
i=1 ‖w̄i‖l1 . This deduction

can also be used to distinguish 2DRVFL from RVFL as
well; (ii) given a similar level of sparsity in W , SCN-based
models are more prone to having a lower near-orthogonal
level than RVFL-based ones, therefore, indicating a smaller
tr(M)−log det(M). For further justifications of these intuitive
arguments, we present analogous theories regarding the near-
orthogonality of weight vectors in the following section (ST2)
and provide some statistical results at the end.

ST2: Weight Vector Angular Constraints to Promote
Diversity. The authors of [24], [25] showed the empirical
effectiveness and explained in theory when and why a low
generalization error can be achieved by adjusting the diversity
of hidden nodes in neural networks. Theoretically, increasing
the diversity of hidden nodes in a neural network model can re-
duce the estimation error but increase the approximation error,
which implies that a low generalization error can be achieved
when the diversity level is set appropriately. Specifically, the
near-orthogonality of the weight vectors (e.g, input weights
and biases) can be used to characterize the diversity of hidden
nodes in a neural network model, and a regularizer with weight
vector angular constraints can be used to alleviate overfitting.
To highlight the impact of near-orthogonality (of the weight
vectors) on the generalization error, we will reformulate the
two main theoretical results addressed in [25]. Prior to this,
some notations and preliminaries on statistical learning theory
are revisited.

Consider the hypothesis set

F := {x 7→
L∑
j=1

βjg(w̄T
j x)

∣∣ ‖β‖2 ≤ B, ‖w̄j‖2 ≤ C,
∀i 6= j, |w̄T

i w̄j | ≤ τ‖w̄i‖2‖w̄j‖2}.

where β stands for the output weight and g(t) = 1/(1 + e−t)
is the sigmoid activation function. Given the training sam-
ples {(xi, yi)}Ni=1 generated independently from an unknown
distribution PXY , the generalization error of f ∈ F is
defined as R(f) = EPXY [12 (f(x) − y)2]. As PXY is not
available, one can only consider minimizing the empirical
risk R̂(f) = 1

2N

∑N
i=1(f(xi) − yi)

2 in lieu of R(f). Let
f∗ ∈ arg minf∈F R(f) be the true risk minimizer and
f̂ ∈ arg minf∈F R̂(f) be the empirical risk minimizer. Then,
the generalization error R(f̂) := R(f̂) − R(f∗) + R(f∗) (of
the empirical risk minimizer f̂) can be estimated by bounding
the estimation error R(f̂)−R(f∗) and the approximation error

R(f∗), respectively. The following Theorem 2 and Theorem
3 show these two estimations in relation to the factor τ .

Theorem 2 [25] (Estimation Error). With a probability of
at least 1− δ, the estimation upper bound of estimation error
decreases as τ becomes smaller, i.e.,

R(f̂)−R(f∗) ≤
γ2
√

2 ln(4/δ) + γB(2C + 4|g(0)|)
√
m√

N
,

where γ = 1 +BC
√

(m− 1)τ + 1/4 +
√
mB|g(0)|.

Suppose the target function G = E[y|x] satisfies a certain
smoothness condition given by

∫
‖ω‖2|G̃(ω)|dω ≤ B/2,

where G̃(ω) represents the Fourier transformation of G. Then,
the approximation error, which reflects the power of the
hypothesis set F for approximating G, is expressed as follows.

Theorem 3 [25] (Approximation Error). A smaller τ
contributes to a larger upper bound of the approximation
error, that is, let C > 1 and L ≤ 2(bπ/2−θθ c + 1), where
θ = arccos(π), then there exists f ∈ F such that

‖f−G‖2≤B(
1√
m

+
1 + 2 lnC

C
)+2
√
LBC sin(

min(2Lθ, π)

2
).

Based on Theorem 2 and Theorem 3, we can come to a
conclusion, that is, a larger upper bound of the generalization
error can be caused by the case when the weight vectors are
highly near-orthogonal with each other (τ is extremely small)
or in a situation when τ is close or equal to 1 (e.g., there exist
two weight vectors that are linearly dependent). Therefore,
given the two obtained (randomized) learner models with
roughly the same training performance, the one equipped with
hidden weight vectors of high near-orthogonality is likely to
result in worse generalization. On the other hand, our previous
work [20] reveals a key pitfall of RVFL networks, that is, all
high-dimensional data-independent random features are nearly
orthogonal to each other with a probability of one. Fortunately,
the supervisory mechanism used in the SCN framework impos-
es an implicit relationship between each weight vector and can
effectively reduce the probability of near-orthogonality. With
all these clues, we can roughly explain why the learner models
produced by SCN and 2DSCN are more prone to result in a
better generalization performance than RVFL and 2DRVFL.

ST3: Vague Relationship between 2DSCN and Drop-
Connect framework. To effectively alleviate over-fitting and
improve the generalization performance, Dropout has been
proposed for regularizing fully connected layers within neural
networks by randomly setting a subset of activations to zero
during training [26], [27]. DropConnect proposed by Wan et
al. [21] is an extension of Dropout in which each connection,
instead of each output unit, can be dropped with a certain
probability. Technically, DropConnect can be viewed as sim-
ilar to Dropout because they both perform dynamic sparsity
within the learner model during the training phase, however,
they differ in that the sparsity-based concerns are imposed on
the hidden input weights, rather than on the output vectors of a
layer. This means the fully connected layer with DropConnect
becomes a sparsely connected layer in which the connections
are chosen at random during the training stage. Importantly,
as noted in [21], the mechanism employed in DropConnect

FINAL VERSION TCYB-E-2018-08-1684 7

is not equivalent to randomly assigning a sparse hidden input
weights matrix (and remain fixed) during the training process,
which indirectly invalidates the effectiveness of the RVFL and
2DRVFL methods even when they use sparse weights in the
hidden layer.

Intuitively, our proposed 2DSCN could be thought of as
being related to DropConnect, in terms of the following points:

• the supervisory mechanism used in 2DSCN aims at incre-
mentally configuring the weight vectors until convergence
to a universal approximator, which is equivalent to the
training objective of DropConnect;

• once the random weight vectors in 2DSCN have many
small elements close to zero, their functionality is similar
to the sparsity mechanism imposed in DropConnect on
the hidden weights;

• on the basis of the above two clues, the incremental pro-
cess performed in 2DSCN can be viewed as being similar
to the proceeding dynamic sparsity within the learner
model during the training phase as used in DropConnect.

We would like to highlight that the original SCN does
not have this kind of vague relationship with DropConnect,
unless certain weights sparsity regularizer is concerned in the
training process. In contrast, 2DSCN involves more weight
vectors with small values, which indeed can be viewed as a
considerable degree of sparsity and has a good potential to
inherit some of the merits of DropConnect and its parallel
methodology.

ST4: Novel Estimation of Test Error. Various statistical
convergence rates for neural networks have been established
when some constraints on the weights are concerned [28],
[29]. Empirically, small weights together with a small training
error can lead to significant improvements in generalization.
All these investigations lend scientific support to heuristic
techniques like weight decay and early stopping. The rea-
son behind this is that producing over-fitted mappings re-
quires high curvature and hence large weights, while keeping
the weights small during training can contribute to smooth
mappings. Technically, the regularization learning framework,
introducing various types of weight penalties such as L2

weight decay [30], [31], Lasso [32], Kullback-Leibler (KL)-
divergence penalty [33], etc., shares a similar philosophy to
help prevent overfitting.

A comprehensive overview of existing theories/techniques
concerning learner models’s generalization capability is out
of the focus of this paper. Instead, we revisit the theoretical
results presented in [34], and illustrate mathematically how
the output weights’ magnitudes affect the randomized learner
models’ generalization power. For a better understanding and
consistent problem formulation, we restate their main result
with reference to our previous notations used in ST2, that is,

Theorem 4 [34]. Consider the hypothesis set Fp :=
{f(x) =

∫
α(w)g(w;w)dw

∣∣|α(w)| ≤ Bp(w)} with certain
distribution p and function g satisfying supx,w |g(x;w)| ≤ 1,
and given a training data set with N input-output pairs drawn
iid from some distribution PXY , a randomized learner model
f̂(x) =

∑L
j=1 g(xi;wi) can be obtained by randomly assign-

ing wi, w2, . . . , wL from the distribution p and solving the

empirical risk minimization problem 1 minβ
1
N

∑N
i=1(f̂(xi)−

yi)
2 subject to ‖β‖∞ ≤ B/L. Then, with a probability of at

least 1 − 2δ, the upper bound for the generalization error of
f̂ can be estimated by

R[f̂] ≤ min
f∈Fp

R[f] +O

((
1√
N

+
1√
L

)
2B

√
log

1

δ

)
Theoretically, the upper bound in Theorem 3 implies that

randomized learner models with good training results and
small output weights can probably lead to preferable general-
ization performance, in terms of the probability perspective.
However, this cannot be used directly to bound the practical
test error to evaluate the randomized learner models’s gen-
eralization performance. More numerical estimation for the
test error (resulting from algorithm realization in practice) is
required to better characterize the generalization capability as
well as the associated impacting factors.

As one of our main contributions in this work, a novel upper
bound estimation for the test error is presented in terms of
computational perspective. To facilitate our theoretical inves-
tigation, we view the hidden layer matrix H as a matrix-valued
function of matrix variable, i.e., H : RN×d → RN×L, denoted
by (see [35] for basic fundamentals on matrix calculus)

H := H(X) =

 g(wT
1 x1 + b1) · · · g(wT

Lx1 + bL)
... · · ·

...
g(wT

1 xN + b1) · · · g(wT
LxN + bL)

(10)

with the argument X represented by

X = (x1, x2, . . . , xN)T =

 x1,1 · · · x1,d
... · · ·

...
xN,1 · · · xN,d

 (11)

Suppose that H is differentiable and has continuous first-
order gradient ∇H , defined by a quartix which belongs to
RN×L×N×d, i.e.,

∇H(X)=

 ∇H1,1(X) · · · ∇H1,L(X)
... · · ·

...
∇HN,1(X) · · · ∇HN,L(X)

 ,

where for i = 1, 2, . . . , N , j = 1, 2, . . . , L

∇Hi,j(X) =

∂g(wT

j xi+bj)

∂x1,1
· · · ∂g(wT

j xi+bj)

∂x1,d

... · · ·
...

∂g(wT
j xi+bj)

∂xN,1
· · · ∂g(wT

j xi+bj)

∂xN,d

 .

Then, the first directional derivative in a given direction Z ∈
RN×d can be represented by

→Z
dH(X) :=

tr
(
∇H1,1(X)TZ

)
· · · tr

(
∇H1,L(X)TZ

)
... · · ·

...

tr
(
∇HN,1(X)TZ

)
· · · tr

(
∇HN,L(X)TZ

)

1*In [34], a general form of cost function is concerned. Here we specify a
quadratic loss function and its associated Lipschitz constant has no impacts
on the final estimation.

FINAL VERSION TCYB-E-2018-08-1684 8

It is logical to think that the test sample matrix X̃ can be
represented by imposing sufficiently small random noises into
the training sample matrix X , i.e., X̃ := X + εZ, where Z ∈
RN×L is a random matrix and ε is sufficiently small. Then,
we can take the first-order Taylor series expansion about X
[35], i.e.,

H(X̃) := H(X + εZ) = H(X) + ε
→Z
d H(X) + o(ε2)

Therefore, the test error can be estimated by

‖H(X̃)β − Y ‖F

= ‖(H(X) + ε
→Z
d H(X) + o(ε2))β − Y ‖F

≤ ‖H(X)β − Y ‖F + ε‖
→Z
d H(X)‖F ‖β‖F

+o(ε2)‖β‖F (12)

where ‖ · ‖F stands for the Frobenius norm, ‖H(X)β − Y ‖F
represents the training error.
Basically, this rough estimation implies two points that should
be highlighted:
(i) The upper bound for the test error can be viewed as
an increasing function of ‖β‖F , which means that learner
models with smaller output weight values are more prone to
generalize preferably on unseen data. This is consistent with
the philosophy behind the regularization learning framework,
that is, imposing a penalty term to control the output weights
magnitudes during the training process.
(ii) We can further investigate how the input weights and

biases affect the value of ‖
→Z
d H(X)‖F . In particular, we

use the sigmoid function in the following deduction, i.e.,
g(t) = 1/(1+e−t) and g′(t) = g(t)(1−g(t)). Mathematically,
the (i, j)-th element (i = 1, 2, . . . , N , j = 1, 2, . . . , L) inside
→Z
d H(X) can be expressed as

tr
(
∇Hi,j(X)TZ

)
:=

N∑
i′=1

d∑
k′=1

∂g(wT
j xi + bj)

∂xi′ ,k′
Zi′ ,k′

= −g(wT
j xi + bj)(1− g(wT

j xi + bj))

d∑
k=1

wj,kZi,k.

Then, a rough upper bound for ‖
→Z
d H(X)‖F can be obtained,

that is,

‖
→Z
d H(X)‖F

≤

√√√√ N∑
i=1

L∑
j=1

(gij(1− gij))2(

d∑
k=1

w2
j,k)(

d∑
k=1

Z2
i,k)

≤ max
1≤i≤N

‖Zi‖2 · ‖H ◦ (O −H) ◦ Ẅ‖F ,

where we use abbreviation gij for g(wT
j xi+bj)), and Cauchy-

Schwarz inequality in the first inequality. Zi stands for the
i-th row vector of the matrix Z. H is defined in (10),
O ∈ RN×L is a matrix of ones (every element is equal to
one), and Ẅ ∈ RN×L is formulated by copying the row

vector (‖w1‖2, ‖w2‖2, . . . , ‖wL‖2) N -times, ‘◦’ stands for the
Hadamard (entrywise) product among the matrixes.

So far, we can summarize the above theoretical result in
the following Theorem 5. Readers can refer to some of the
aforementioned notations in the context.

Theorem 5. Given training input X ∈ RN×d and output
Y ∈ RN×m, suppose a randomized neural network model
with L hidden nodes is build, corresponding to the hidden
layer output matrix (on the training data) H ∈ RN×L, the
output weight matrix β, and the training error ‖Hβ − Y ‖F .
Let X̃ := X + εZ be the test (unseen) input data matrix,
where Z ∈ RN×L is a random matrix, ε is sufficiently small,
H̃ stand for the associated hidden layer output matrix, then,
the test error can be bounded by

‖H̃β−Y ‖F
≤ ‖Hβ−Y ‖F + εmax

1≤i≤N
‖Zi‖2 ·‖H◦(O−H)◦Ẅ‖F ‖β‖F

+o(ε2)‖β‖F . (13)

Remark 3. We would like to highlight a trick concerned in
the previous deduction for Theorem 5. We preserve the bundle
of computational units ‘(gij(1 − gij))2‖wj‖22’ rather than to
roughly estimating the whole term by ‘(1

4)2‖wj‖22’, which
consequently can result in a very blunt bound 1

4‖W‖F ‖Z‖F
for ‖

→Z
d H(X)‖F . Unfortunately, upper bound 1

4‖W‖F ‖Z‖F
sounds meaningless because it does not consider the satu-
ration property of the sigmoid function, and may cause the
misleading thought that ‘larger input weights can destroy the
generalization capability’. In contrast, our proposed upper
bound (13) is nearly sharp and can provide valuable infor-
mation to identify the role of input weights (and biases) and
training samples on the learner models’s generalization power.
It is a bundle of computational units ‖H ◦ (O − H) ◦ Ẅ‖F
rather than merely the ‖W‖F that acts as a suitable indicator
for predicting the generalization performance. Furthermore, it
should be noted that, input weights (and biases) with small
values but enforcing the g(·) ≈ 1 or g(·) ≈ 0 (corresponding
to the saturation range of the sigmoid function), are more
likely to result in a small value of ‖H ◦ (O − H) ◦ Ẅ‖F
and consequently bring a small generalization error bound.

On the other hand, the right side of Eq. (13) has a strong
resemblance to the regularized learning target by viewing
εmax1≤i≤N‖Zi‖2 ·‖H ◦(O−H)◦Ẅ‖F as the regularization
factor σ > 0, that is, ‖Hβ−Y ‖F + σ‖β‖F , considered as a
whole to effectively alleviate over-fitting.

Why 2D randomized models are equipped with more
small weights? Since small weights to some extent can
probably have a certain positive influence on enhancing a
learner model’s generalization ability, one major issue still
left unclarified is whether or not 2D randomized learner
models possess this advantage. For this purpose and before
ending this section, we provide a statistical verification on the
frequency when sufficiently small weights occur in 1D and 2D
randomized models, aiming to further support the superiority
of 2D randomized models.

Given the distribution P (either uniform or gaussian), we
investigate the statistical differences among the following three

FINAL VERSION TCYB-E-2018-08-1684 9

strategies for randomly assigning parameters:
• M1: Randomly assign w = [w1, w2, . . . , wd]

T from P;
• M2: Randomly assign z1 = [z1,1, z1,2, . . . , z1,d]

T,
z2 = [z2,1, z2,2, . . . , z2,d]

T from P , then calculate their
Hadamard (entrywise) product w(1D−P) = z1 ◦ z2;

• M3: Randomly assign u = [u1, u2, . . . , ud1]T, v =
[v1, v2, . . . , vd2]T, with d1d2 = d, then calculate uvT and
let w2D := vec(uvT).

A simple and vivid demonstration for the distribution of
the random weights induced by M1 and M3 is provided in
Fig. 2, in which it can be clearly seen that w2D have more
small values (near zero) than w. Based on our empirical
experience, similar plotting (display) between M2 and M3
looks visually indistinguishable. More statistical results are
helpful for making a reasonable distinction among M1∼M3.

(a) w2D
i (b) wi

Fig. 2. Simple illustration for the distribution of 1D and 2D random weights:
(a) Values of w2D

i generated by M3 with d1 = d2 = 28; (b) Values of wi

generated by M1 with d = 784. Both w2D
i and wi are reshaped into 28×28

for visualization.

Our primary objective is to find how frequently these
strategies contribute to a high dimensional random vector (w,
w(1D−P), or w2D) with a considerable number of elements
whose values are close to zero. Here we present the theoretical
results to answer this question and then provide an empirical
verification using statistics. Specifically, from a probability
perspective, we conclude that M3 are more prone to get a
random vector with more elements close to 0, as mathemati-
cally expressed by

P

#
{
i
∣∣∣|w2D

i | ≤ ε
}

d
≥ p

≥ P

#
{
i
∣∣∣|w(1D−P)

i | ≤ ε
}

d
≥ p

≥ P

#
{
i
∣∣∣|wi| ≤ ε}
d

≥ p

 , (14)

where ε is a small value close to 0, as a reference factor for
locating small elements of the random vector. #{·} stands
for the cardinality, which of course is equal to the number
of elements we are interested in counting, i.e, whose absolute
values are equal to/lower than ε. On the other hand, p is a
threshold by which we can study the normalized percentage
(#{·}/d ∈ [0, 1]) when elements of interest occur in that
random vector (w, w(1D−P), or w2D).

Instead of providing a rigorous mathematical proof, here
we focus on an empirical study to verify the inequalities
(14) using statistics. In particular, we set d1 = d2 = 28,
d = 784, p = 8%, 10%, 12%, 15%, ε = 0.01, 0.03, 0.05, 0.1,
respectively, and study two options for P , i.e., uniform (Case
1) and Gaussian distribution (Case 2), then run 100,000
independent numerical simulations to approximate those three
probability values compared in (14), in terms of each set of
(p, ε) for both distribution cases. In the following, we give
some theoretical description and the statistical results for Case
1 and 2.

Case 1. Given two independent uniform random variables
z1 ∼ U [−1, 1] and z1 ∼ U [−1, 1], the probability density
function (p.d.f) of their product z = z1z2 can be expressed by

p(x) =

{
−1
2 lnx, 0 < z ≤ 1
−1
2 ln(−x), −1 ≤ z < 0

In the simulation, we conduct 100,000 independent trials
for randomly assigning w, w(1D−P), and w2D according to
M1 M3, respectively. Then, we can count the number of times
(denoted by M) when the condition #{·}/d ≥ p is satisfied,
followed by roughly estimating the true probability in (14)
with P̃ = M/100000. In Table I, we list the corresponding
P̃ values (arranged in order w2D/w(1D−P)/w) for the cases
with different settings of ε (e.g., 0.001, 0.005, 0.01) and p
(e.g., 8%, 10%, 12%, 15%), demonstrating that 2D models
have more opportunities to have small input weights during
the training process.

TABLE I
STATISTICAL VERIFICATION FOR CASE 1 UNIFORM DISTRIBUTION

Case 1 ε = 0.001 ε = 0.005 ε = 0.01

p = 8% 0.0047 / 0 / 0 0.1338 / 2.0e-5 / 0 0.4022 / 0.2838 / 0

p = 10% 1.1e-4 / 0 / 0 0.0160 / 0 / 0 0.1131 / 0 / 0

p = 12% 3.0e-5 / 0 / 0 0.0045 / 0 / 0 0.0497 / 0 / 0

p = 15% 0 / 0 / 0 6.7e-4 / 0 / 0 0.0126 / 0 / 0

Case 2. Given two independent normal random variables
z1 ∼ N(0, σ2

1) and z2 ∼ N(0, σ2
2), the probability density

function (p.d.f) of their product z = z1z2 can be expressed by

p(x) :=
1

πσ1σ2
K0

(
|x|
σ1σ2

)
, x ∈ R,

where K0(·) is a modified Bessel function of the second kind
of order zero [36], as given by

K0(x) =

∫ ∞
0

e−x cosh(t)dt

Similarly, we present the associated P̃ values for
w2D/w(1D−P)/w respectively in Table II, in which the
records also show that 2D randomized models are more prone
to be equipped with small weights.

IV. PERFORMANCE EVALUATION

In this section, we demonstrate the advantages of 2DSCNs
in image data modelling tasks, compared with some base-
line/randomized learning methods namely SCN, RVFL and

FINAL VERSION TCYB-E-2018-08-1684 10

TABLE II
STATISTICAL VERIFICATION FOR CASE 2 GAUSSIAN DISTRIBUTION

Case 2 ε = 0.001 ε = 0.005 ε = 0.01

p = 8% 0.0011 / 0 / 0 0.0445 / 0 / 0 0.1781 / 4.6e-4 / 0

p = 10% 1.0e-5 / 0 / 0 0.0025 / 0 / 0 0.0248 / 0 / 0

p = 12% 0 / 0 / 0 3.8e-4 / 0 / 0 0.0071 / 0 / 0

p = 15% 0 / 0 / 0 2.0e-5 / 0 / 0 9.2e-4 / 0 / 0

2DRVFL networks, as well as some classic (pretrained) deep
CNN models.

A. Regression: Rotation Angle Predication for Handwritten
Digits

We first demonstrate the merits of the proposed 2DSCN
by predicting the angles of rotation of handwritten digits. In
particular, the Neural Network Toolbox in MATLAB R2017b
provides a collection of synthetic handwritten digits, which
contains 5000 training and 5000 test images of digits with cor-
responding angles of rotation. Each image represents a rotated
digit in grayscale and of normalized size (28× 28). Baseline
approaches such as RVFL and SCN deploy one-dimensional
input (reshaping the image into a vector) in modelling, while
2DRVFL and 2DSCN can directly deal with image-based
inputs in problem-solving. It should be noted that, w in RVFL,
u (and v) in 2DRVFL are randomly assigned from [−1, 1]784

and [−1, 1]28, respectively, while the biases for them are
randomly assigned from [−1, 1]. For SCN and 2DSCN, we
take Tmax = 5, λ = {1, 5, 15, 30, 50, 100, 150, 200, 250},
r = {1 − 10−j}7j=2 in the algorithm implementation (see
Section 3 for the functionality of these parameters).

Two types of evaluation metrics are used in the performance
comparison: (i) the percentage of predictions within an ac-
ceptable error margin (PPA); and (ii) the root-mean-square
error (RMSE) of the predicted and actual angles of rotation. In
particular, a user-defined threshold θ (in degrees) is needed to
measure the PPA values, that is, calculating the error between
the predicted and actual angles of rotation and then counting
the number of predictions within an acceptable error margin
θ from the true angles. Mathematically, the PPA value within
threshold θ can be obtained by

PPA =
#{|Prediction Error| < θ}
Number of Sample Images

.

Table III shows both the training and test results for these

TABLE III
PERFORMANCE COMPARISON ON TRAINING (TR) AND TEST (TE)

Algorithms
PPA (%), θ = 15 PPA (%), θ = 25 RMSE

Tr Te Tr Te Tr Te

RVFL 95.15 79.97 99.76 95.64 7.51 12.04

SCN 99.84 87.19 99.98 98.08 4.57 10.08

2DRVFL 95.59 81.05 99.78 95.72 7.32 11.91

2DSCN 99.88 87.55 100 98.12 4.42 9.96

four algorithms (L = 1800) in terms of PPA and RMSE, with

threshold θ set to 15 and 20, respectively. It is observed that
both SCN and 2DSCN outperform RVFL-based algorithms,
and 2DSCN has the highest PPA and lowest RMSE values,
which reflects a better learning and generalization capability.
Specifically, given θ = 25, the 2DSCN-based learner model
contributes 100% (training) and 98.12% (test) PPA values,
compared with 2DRVFL with 99.78% and 95.72%, respec-
tively. Based on a simple calculation according to the PPA
values and the number of training/test samples, we can im-
mediately notice that 2DRVFL produces some training errors
with absolute values larger than 25 degrees whereas all the
training predictive errors of 2DSCN are under this threshold.
Also, there are less than 100 test digits predicted by 2DSCN,
however, more than 200 instances by 2DRVFL, with degree
errors outside the interval [−25, 25]. It should be noted that
all the results illustrated in Table III are the averaged values
based on 50 independent trials. Based on a rule of thumb, their
standard deviations have no significant difference, so we omit
this information here without any confusion. Here we only
consider randomized learner models with shallow structures.
Some recent work studying the manifold regularized deep
learning architecture or hierarchical convolutional features
[37]–[39] can also offer alternative methods for this image-
based regression task.

B. Classification: Handwritten Digit Recognition

In this part, we compare our proposed 2DSCN algorithm
with the other three randomized approaches on the image
classification problem. Four benchmark handwritten digits
databases are employed in the comparison. Parameter setting
for these four algorithms (w, b, u, v, λ, Tmax, r) is the same as
the configuration used in the previous regression task. In par-
ticular, Bangla, Devnagari, and Oriya handwritten databases
provided by the ISI (Indian Statistical Institute, Kolkata)2, and
CVL which is usually used for pattern recognition competi-
tions3, are employed in our experimental study as a benchmark
resource for optical character recognition. Readers can refer to
our previous work [12] for a more description of these datasets
as well as their training and test division.

1) Results and Discussion: Fig. 3 compares the perfor-
mance of the testing in terms of different settings of L, in
which the mean and standard deviation values of recognition
rate are based on 10 independent trials (more trails can provide
more convincing results but this is not necessary based on our
experience, because the standard deviation values are relatively
small and stable at a certain level). It is apparent that 2DSCN
outperforms the others while RVFL has the worst results for all
four datasets. Interestingly, the test results of 2DSCN are much
better than that of SCN. For Bangla, Devnagari, and Oriya,
2DRVFL occasionally results in slightly higher recognition
rates in testing. It becomes much clearer in the subplots for the
CVL dataset, i.e., 2DRVFL works more favorably than SCN
but it is still worse than 2DSCN, which to some extent, lends
strong support to our theoretical investigation of the superiority
of randomized learners with 2D inputs.

2http://www.isical.ac.in/ ujjwal/download/database.html
3http://www.caa.tuwien.ac.at/cvl/category/research/cvl-databases/

FINAL VERSION TCYB-E-2018-08-1684 11

(a) Bangla:Test (b) Devnagari:Test (c) Oriya:Test (d) CVL:Test

Fig. 3. Performance comparison among 2DSCN, 2DRVFL, SCN, and RVFL on Bangla, Devnagari, Oriya, and CVL database.

C. Case Study: Human Face Recognition

We further demonstrate the advantage of 2DSCN over
the other three randomized learner models on human face
recognition tasks, where the input dimensionality is far more
larger than that of the handwritten digit problems previously
addressed.

(a) ORL

(b) FERET

Fig. 4. Samples of face images from the ORL and FERET database. Ten
subjects with two expressions for each are displayed.

1) Databases: ORL [40]: The Olivetti (ORL, now AT&T)
database contains ten 112 × 92 pixel gray scale images of
40 different individuals. Some of the images were taken at
different times, with various lighting conditions, different types
of facial expressions (open/closed eyes, smiling/not smiling)
and varying facial details (glasses/no glasses). All the images
were taken against a dark homogeneous background with the
subjects in an upright, frontal position (with tolerance for some
side movement).

FERET [41]: The Facial Recognition Technology (FERET)
database contains a total of 14,126 gray scale images for
1199 subjects, which were collected over several sessions
spanning more than three years. For some individuals, over
two years had elapsed between their first and last sittings,
with some subjects being photographed multiple times. In
our experimental study, we choose 72 subjects with 6 frontal
images of size 112× 92 per person.

From these two databases, we randomly select half of the
images for each subject as the training samples and the other
half for testing.

2) Results and Discussion: In our experiments, we employ
the same parameter settings for these four algorithms (see

part A for details), and conduct the performance comparison
with various setups for the number of hidden nodes, i.e.,
L = 200, 400, 600, 800, 1000, respectively. For each dataset,
50 independent trials are performed on each L for all four
algorithms. Fig. 5 shows their test recognition rates with
both mean and standard deviation values. Similar to what we
have previously demonstrated, 2DSCN clearly outperforms the
other three algorithms in terms of generalization. On the other
hand, we should note that the training recognition rate for
all these algorithms in all cases is 1, which means that each
method with the current parameter settings exhibits sufficient
learning capability, however, there is significant discrepancy in
generalization ability. Furthermore, as shown in Fig. 5, there
is no large difference between the performance of 2DRVFL
and that of SCN, and both achieve better results than RVFL.
It is fair to say that 2D models have more advantages than
1D models in both training and testing, similar to what was
observed in Parts A and B. Based on Theorem 5 in Section III,

(a) ORL (b) FERET

Fig. 5. Comparison of the test recognition rate of 2DSCN, 2DRVFL, SCN,
and RVFL on ORL and FERET.

we can numerically estimate the test error upper bound for the
learner model produced by each of these four algorithms. Note
that the upper bound in Eq. (13) comprises three parts, that
is, training error ‖Hβ − Y ‖F , εmax1≤i≤N ‖Zi‖2 ·‖H ◦(O−
H)◦Ẅ‖F ‖β‖F , and the sufficiently small term o(ε2)‖β‖F ,
respectively. Since their training errors stay at the same level
(training recognition rate equals to 1 for each case) and the
fact that ‖β‖F also occurs in the second part, we only need
to consider the second term but without the common factor
max1≤i≤N ‖Zi‖2 in our empirical examination. In particular,
for each method, we consider the case of L = 600 and
calculate the value of ‖H ◦ (O−H) ◦ Ẅ‖F · ‖β‖F for the 50
resulting learner models based on independent trials, followed
by a normalization operation by dividing the corresponding

FINAL VERSION TCYB-E-2018-08-1684 12

figure by the maximum value of all the 50 × 4 = 200
records. We call this numerical (predictive) upper bound the
generalization indicator Θ := {Θi}200i=1, denoted by (refer to
Section III for some notations)

Θi =
{‖H ◦ (O −H) ◦ Ẅ‖F · ‖β‖F }i

max{‖H ◦ (O −H) ◦ Ẅ‖F · ‖β‖F }200i=1

,

where the index i corresponds to the i-th record among the
total 200 records.

Fig. 6 plots all these 200 records for the four algorithms (50
records for each), in which we can clearly observe that 2DSCN
exhibits a lowest test error upper bound than the other three
methods while RVFL has the highest results. Interestingly, this
is consistent with the comparison of their real test recognition
rate shown in Fig. 5, therefore, this verifies the effectiveness
and practicability of our Theorem 5. Based on our experience,
similar results can be obtained with the other option of L
setting, and as such, learner models built by the 2DSCN
algorithm have the smallest predictive test error upper bound
estimation. As for the space limitation, more statistical results
and analysis are left for our future work.

5 10 15 20 25 30 35 40 45 50
Simulation Index

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

V
al

ue
 o

f G
en

er
al

iz
at

io
n

In
di

ca
to

r

RVFL
 2DRVFL
SCN
2DSCN

(a) ORL

5 10 15 20 25 30 35 40 45 50
Simulation Index

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

V
al

ue
 o

f G
en

er
al

iz
at

io
n

In
di

ca
to

r

RVFL
 2DRVFL
SCN
2DSCN

(b) FERET

Fig. 6. Test error upper bound comparison for 2DSCN, 2DRVFL, SCN, and
RVFL on ORL and FERET.

3) Robustness Illustration: To further investigate the supe-
riority of 2DSCN over the other methods, we randomly select
50 images from the ORL training set and artificially simulate
contiguous occlusion by replacing a randomly located square
block of each chosen image with an unrelated image (e.g.,
Koala). Fifteen of these corrupted images are displayed in
Fig. 7(a). Our objective is to compare the test performance
of these four algorithms and study their capability to perform
robustly in training, that is, to what extent can they alleviate
the impacts of random block occlusion attached in the training
images. All details for the experiment setup remain the same as
those used for the original (clean) ORL dataset. As can be seen
in Fig. 7(b), 2DSCN still performs the best in generalization,
and at the same time, RVFL has the lowest test recognition
rates. This observation can to some extent implies that 2D
models may still exhibit their merits for problem-solving in
relation to robust image data modelling, on the basis of their
underlying advantages as shown throughout this paper. Due to
the space limitation, we do not conduct in-depth comparisons
and analysis on this task, although various methods address
weakly supervised face classification/detection [42]. This is
beyond the scope of our study.

(a) (b)

Fig. 7. (a): Sample images from ORL with random block occlusion; (b):
Test recognition rate comparison for 2DSCN, 2DRVFL, SCN, and RVFL on
corrupted ORL.

D. Comparison with Classic Deep CNN Models

In this section, we compare the 2DSCN model with 11
classic deep CNN models: VGG16 (with depth 16 and around
138 million parameters) and VGG19 (with depth 19 and
around 144 million parameters) [43], AlexNet [44] (with depth
8 and around 61 million parameters), ResNet-18 (with depth
18 and around 11.7 million parameters), ResNet-50 (with
depth 50 and around 25.6 million parameters), ResNet-101
(with depth 101 and around 44.6 million parameters) [45],
GooLeNet (with depth 22 and around 7 million parameters)
[46], SqueezeNet (with depth 18 and around 1.24 million
parameters) [47], DenseNet-201 (with depth 201 and around
20 million parameters) [48], Inception-v3 (with depth 48 and
around 23.9 million parameters) [49], and Inception-ResNet-
v2 (with depth 164 and around 55.9 million parameters) [50],
on the CIFAR-10 dataset4 which has 60000 32×32 colour
images in 10 classes, with 6000 images per class. We should
clarify that we only use the pretrained modules of these
models as the starting point to build a deep classifier on
CIFAR-10, that is, transfer learning, which is typically much
faster and easier than training a network from scratch. The
pretrained networks are built on more than a million images
and have already learned to extract powerful and informative
features from natural images. The training images are a subset
of the ImageNet database5, which is used in the ImageNet
Large-Scale Visual Recognition Challenge (ILSVRC) [51]. For
simplicity, we only consider four categories in CIFAR-10, i.e.,
‘deer’, ‘dog’, ‘frog’, ‘cat’, and randomly select 500 sample im-
ages per class for training (2000 images in total) and the whole
set of test images in these four classes for testing (4000 images
in total). These deep CNN models can be imported from
MATLAB2018b Deep Learning Toolbox by using the Add-
On Explorer. In AlexNet, VGG16 and VGG19, the last layer
with learnable weights is a fully connected layer, therefore,
we have to replace this fully connected layer by specifying
‘numClasses==4’ to fit the classification task on CIFAR-10. In
some networks such as SqueezeNet, the last lacerable layer is a
1-by-1 convolutional layer instead. In such cases, we modify
the convolutional layer with a new convolutional layer with
the number of filters equal to 4. Furthermore, we specify
the training options with ‘InitialLearnRate==0.001’, ‘Max-

4CIFAR-10. https://www.cs.toronto.edu/ kriz/cifar.html
5ImageNet. http://www.image-net.org

FINAL VERSION TCYB-E-2018-08-1684 13

Epochs==20’, ‘MiniBatchSize==60’, “ExecutionEnvironmen-
t==‘cpu”’. For 2DSCN, we set the number of hidden nodes
as 850, which is selected based on sufficient empirical trials
with L = 500 : 50 : 1000, and use a similar hyper-parameter
setting as in the previous simulations.

TABLE IV
COMPARISON WITH CLASSIC DEEP CNN MODELS ON CIFAR10

Model Accuracy (%) Elapsed Time (s)
Training Test Training Test

VGG16 [43] 90.81 89.08 31,721 978
VGG19 [43] 91.17 90.03 38,025 1,267
AlexNet [44] 88.29 86.00 2,460 76

ResNet-18 [45] 88.88 86.25 6,088 175
ResNet-50 [45] 89.00 87.33 18,523 448
ResNet-101 [45] 90.27 88.90 30,669 720
GoogLeNet [46] 90.47 89.20 7,287 236
SqueezeNet [47] 85.75 84.60 4,427 146

DenseNet-201 [48] 91.73 90.65 68955 1,124
Inception-v3 [49] 84.88 83.98 25,888 736

Inception-ResNet-v2 [50] 85.54 84.70 106,795 1,424

2DSCN 88.20 85.63 313 16

Table IV demonstrates the training and test results for these
deep CNN models and our 2DSCN model. It is clear that the
accuracy of 2DSCN can match most of the deep CNN models
whilst it has the least time cost in both training and testing.
It is worth mentioning that 2DSCN appears inferior to some
models in terms of accuracy, however, this is excusable in
view of two aspects: (i) Convolution operations can benefit the
abstract feature extraction, which contributes to a preferable
classifier. 2DSCN is not equipped with the convolutional layer,
which it seems relatively unfair to put it in the lineup of
deep CNN models; (ii) 2DSCN only has one hidden layer
rather than a very deep structure. Furthermore, some tricks like
batch-normalization, pooling and dropout, as contributors for
improving generalization capability in deep CNN models, are
not included in the current design of 2DSCN. In spite of these
points, 2DSCN has shown good potential in image modeling
with acceptable effectiveness and sufficient efficiency. Before
ending this section, we should clarify again that our main focus
in this paper is the extension of our previous SCN framework
[12] to a 2D version, rather than building deep CNN ones.
In our future work, we will devote more effort to enhancing
2DSCN with convolutional layers and a deep architecture.

V. CONCLUSIONS

This paper develops two dimensional stochastic configu-
ration networks (2DSCNs), which extend the original SCN
framework for data analytics with matrix inputs. Compared
to existing randomized learning techniques, the proposed al-
gorithm maintains all the advantages of the original learning
techniques for SCNs, such as fast modelling, universal ap-
proximation property, and sound generalization power. Some
associations and differences between 2DSCNs and SCNs are
theoretically investigated and empirically justified. Our main
technical contribution in this paper lies in an interpretation of
the reasons behind the improved generalization of 2DSCNs

against the original SCNs for image data modelling. Com-
pared to the performance obtained from SCNs, RVFLs and
2DRVFLs, we conclude that 2DSCNs outperform in terms of
both learning and generalization.

There are many interesting studies left for future work. The
framework and the associated theoretical analysis are generic
and general enough to adopt deep machinery. Therefore, one
can make efforts towards building a deep 2DSCN to maintain
both the superiority of DeepSCN [15] and the advantages
of 2DSCN. Alternatively, one can employ the 2DSCN-based
autoencoder and then stack the configured autoencoders in a
greedy layerwise fashion to build a deep network. It is also
of practical importance to employ the proposed 2DSCN in
stream image data modelling or robust data modelling [13],
[16], and it is meaningful to further enhance 2DSCN by
considering the regularization learning framework or refined
stochastic configuration inequality with sparsity constraints.
Various extensions of the 2DSCN framework to versions with
convolutional layers or sparse learning representation or (deep)
kernel learning or tensor representation (or multi-channel) for
dealing with color images (or videos), are expected.

ACKNOWLEDGMENT

The authors would like to thank the editors and reviewers
for their suggestions on improving this paper. This work
was supported by the National Natural Science Foundation
of China (No. 61802132, No. 61890924), and the China
Postdoctoral Science Foundation Grant (No. 2018M630959).

REFERENCES

[1] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016.

[2] N. Qi, Y. Shi, X. Sun, J. Wang, and B. Yin, “Two dimensional synthesis
sparse model,” in Proceedings of IEEE International Conference on
Multimedia and Expo, pp. 1–6, 2013.

[3] N. Qi, Y. Shi, X. Sun, J. Wang, and W. Ding, “Two dimensional
analysis sparse model,” in Proceedings of the 20th IEEE International
Conference on Image Processing, pp. 310–314, 2013.

[4] N. Qi, Y. Shi, X. Sun, J. Wang, B. Yin, and J. Gao, “Multi-dimensional
sparse models,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 40, no. 1, pp. 163–178, 2018.

[5] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[6] J. Gao, Y. Guo, and Z. Wang, “Matrix neural networks,” arXiv preprint
arXiv:1601.03805, 2016.

[7] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal
representations by backpropagating errors,” Nature, vol. 323, pp. 533–
536, 1986.

[8] S. Liu, Y. Sun, Y. Hu, J. Gao, F. Ju, and B. Yin, “Matrix variate RBM
model with gaussian distributions,” in Proceedings of International Joint
Conference on Neural Networks, pp. 808–815, 2017.

[9] S. Scardapane and D. Wang, “Randomness in neural networks: An
overview,” WIREs Data Mining and Knowledge Discovery, vol. e1200.
doi: 10.1002/widm.1200, 2017.

[10] Y. H. Pao, G. H. Park, and D. J. Sobajic, “Learning and generalization
characteristics of the random vector functional-link net,” Neurocomput-
ing, vol. 6, no. 2, pp. 163–180, 1994.

[11] B. Igelnik and Y. H. Pao, “Stochastic choice of basis functions in
adaptive function approximation and the functional-link net,” IEEE
Transactions on Neural Networks, vol. 6, no. 6, pp. 1320–1329, 1995.

[12] D. Wang and M. Li, “Stochastic configuration networks: Fundamentals
and algorithms,” IEEE Transactions on Cybernetics, vol. 47, no. 10, pp.
3466–3479, 2017.

[13] D. Wang and M. Li, “Robust stochastic configuration networks with
kernel density estimation for uncertain data regression,” Information
Sciences, vol. 412, pp. 210–222, 2017.

FINAL VERSION TCYB-E-2018-08-1684 14

[14] D. Wang and C. Cui, “Stochastic configuration networks ensemble
with heterogeneous features for large-scale data analytics,” Information
Sciences, vol. 417, pp. 55–71, 2017.

[15] D. Wang and M. Li, “Deep stochastic configuration networks with
universal approximation property,” In Proceedings of International Joint
Conference on Neural Networks, pp. 1–8, 2018.

[16] M. Li, C. Huang, and D. Wang, “Robust stochastic configuration
networks with maximum correntropy criterion for uncertain data regres-
sion,” Information Sciences, vol. 473, pp. 73–86, 2019.

[17] M. Pratama, and D. Wang, “Deep stacked stochastic configuration net-
works for lifelong learning of non-stationary data streams,” Information
Sciences, vol. 495, pp. 150–174, 2019.

[18] J. Lu, J. Zhao, and F. Cao, “Extended feed forward neural networks
with random weights for face recognition,” Neurocomputing, vol. 136,
pp. 96–102, 2014.

[19] A. N. Gorban, I. Y. Tyukin, D. V. Prokhorov, and K. I. Sofeikov, “Ap-
proximation with random bases: Pro et contra,” Information Sciences,
vol. 364, pp. 129–145, 2016.

[20] M. Li and D. Wang, “Insights into randomized algorithms for neural
networks: Practical issues and common pitfalls,” Information Sciences,
vol. 382–383, pp. 170–178, 2016.

[21] L. Wan, M. Zeiler, S. Zhang, Y. Le Cun, and R. Fergus, “Regularization
of neural networks using dropconnect,” in Proceedings of the 30th
International Conference on Machine Learning, pp. 1058–1066, 2013.

[22] P. Lancaster and M. Tismenetsky, The Theory of Matrices: With Appli-
cations. Elsevier, 1985.

[23] P. Xie, H. Zhang, and E. P. Xing, “Learning less-overlapping represen-
tations,” arXiv preprint arXiv:1711.09300, 2017.

[24] P. Xie, Y. Deng, and E. Xing, “On the generalization error bounds of
neural networks under diversity-inducing mutual angular regularization,”
arXiv preprint arXiv:1511.07110, 2015.

[25] P. Xie, Y. Deng, Y. Zhou, A. Kumar, Y. Yu, J. Zou, and E. P. Xing,
“Learning latent space models with angular constraints,” in Proceedings
of the 34th International Conference on Machine Learning, pp. 3799–
3810, 2017.

[26] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R.
Salakhutdinov, “Improving neural networks by preventing co-adaptation
of feature detectors,” arXiv preprint arXiv:1207.0580, 2012.

[27] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: A simple way to prevent neural networks from overfit-
ting,” Journal of Machine Learning Research, vol. 15, no. 1, pp. 1929–
1958, 2014.

[28] P. L. Bartlett, “The sample complexity of pattern classification with
neural networks: the size of the weights is more important than the size
of the network,” IEEE Transactions on Information Theory, vol. 44,
no. 2, pp. 525–536, 1998.

[29] K. Zhong, Z. Song, P. Jain, P. L. Bartlett, and I. S. Dhillon, “Recovery
guarantees for one-hidden-layer neural networks,” arXiv preprint arX-
iv:1706.03175, 2017.

[30] A. E. Hoerl and R. W. Kennard, “Ridge regression: Biased estimation
for nonorthogonal problems,” Technometrics, vol. 12, no. 1, pp. 55–67,
1970.

[31] T. Poggio, V. Torre, and C. Koch, “Computational vision and regular-
ization theory,” Nature, vol. 317, no. 26, pp. 314–319, 1985.

[32] R. Tibshirani, “Regression shrinkage and selection via the lasso,”
Journal of the Royal Statistical Society. Series B (Methodological), pp.
267–288, 1996.

[33] Q. V. Le, J. Ngiam, A. Coates, A. Lahiri, B. Prochnow, and A. Y. Ng,
“On optimization methods for deep learning,” in Proceedings of the 28th
International Conference on Machine Learning, pp. 265–272, 2011.

[34] A. Rahimi and B. Recht, “Weighted sums of random kitchen sinks:
Replacing minimization with randomization in learning,” in Advances
in Neural Information Processing Systems, pp. 1313–1320, 2009.

[35] J. Dattorro, Convex Optimization & Euclidean Distance Geometry.
Meboo Publishing, 2010.

[36] M. Springer and W. Thompson, “The distribution of products of Beta,
Gamma and Gaussian random variables,” SIAM Journal on Applied
Mathematics, vol. 18, no. 4, pp. 721–737, 1970.

[37] Y. Yuan, L. Mou, and X. Lu, “Scene recognition by manifold regularized
deep learning architecture,” IEEE Transactions on Neural Networks and
Learning Systems, vol. 26, no. 10, pp. 2222–2233, 2015.

[38] X. Lu, X. Zheng, and Y. Yuan, “Remote sensing scene classification by
unsupervised representation learning,” IEEE Transactions on Geoscience
and Remote Sensing, vol. 55, no. 9, pp. 5148–5157, 2017.

[39] X. Lu, Y. Chen, and X. Li, “Hierarchical recurrent neural hashing
for image retrieval with hierarchical convolutional features,” IEEE
Transactions on Image Processing, vol. 27, no. 1, pp. 106–120, 2018.

[40] F. S. Samaria and A. C. Harter, “Parameterisation of a stochastic model
for human face identification,” In Proceedings of the 2nd IEEE Workshop
on Applications of Computer Vision, pp. 138–142, 1994.

[41] P. J. Phillips, H. Wechsler, J. Huang, and P. J. Rauss, “The FERET
database and evaluation procedure for face-recognition algorithms,”
Image and Vision Computing, vol. 16, no. 5, pp. 295–306, 1998.

[42] Q. Huang, C. K. Jia, X. Zhang, and Y. Ye, “Learning discriminative sub-
space models for weakly supervised face detection,” IEEE Transactions
on Industrial Informatics, vol. 13, no. 6, pp. 2956–2964, 2017.

[43] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[44] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” In Advances in Neural
Information Processing Systems, pp. 1097–1105, 2012.

[45] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 770–778, 2016.

[46] C. Szegedy, W.Liu, Y. Jia, P. Sermanet, S. Reed, and et al., “Going
deeper with convolutions,” In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 1–9, 2015.

[47] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and K.
Keutzer, “Squeezenet: Alexnet-level accuracy with 50x fewer parameters
and < 0.5 mb model size,” arXiv preprint arXiv:1602.07360, 2016.

[48] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pp. 2261–2269,
2017.

[49] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the inception architecture for computer vision,” In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp.
2818–2826, 2016.

[50] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4,
inception-resnet and the impact of residual connections on learning,” In
Proceedings of the 31st AAAI Conference on Artificial Intelligence , pp.
4278-4284, 2017.

[51] O. Russakovsky, J.Deng, H. Su, J. Krause, S. Satheesh, and et al., “Im-
ageNet large scale visual recognition challenge,” International Journal
of Computer Vision, vol. 115, no. 3, pp. 211–252, 2015.

Ming Li is doing a postdoctoral fellowship in the
Department of Information Technology in Education
at South China Normal University, China. Before
this, he received his PhD degree from the Depart-
ment of Computer Science and IT at La Trobe
University, Australia, in 2017. Before that, he was
awarded a Master degree in Applied Mathematics
from China Jiliang University, China, in 2013, and
a Bachelor degree in Information and Computing
Sciences from Shandong Normal University, China,
in 2010. His research interests include deep learn-

ing, fast and randomized learning algorithms, robust modelling techniques,
educational data analytics, applied and computational harmonic analysis.

Dianhui Wang (M’03-SM’05) was awarded a Ph.D.
from Northeastern University, Shenyang, China, in
1995. From 1995 to 2001, he worked as a Post-
doctoral Fellow with Nanyang Technological Uni-
versity, Singapore, and a Researcher with The Hong
Kong Polytechnic University, Hong Kong, China.
He joined La Trobe University in July 2001 and is
currently a Reader and Associate Professor with the
Department of Computer Science and Information
Technology, La Trobe University, Australia. He is
a visiting Professor at The State Key Laboratory of

Synthetical Automation of Process Industries, Northeastern University, China.
His current research focuses on industrial big data oriented machine learn-
ing theory and applications, specifically on Deep Stochastic Configuration
Networks (http://www.deepscn.com/) for data analytics in process industries,
intelligent sensing systems and power engineering.

Dr Wang is a Senior Member of IEEE, and serving as an Associate Editor
for IEEE Transactions On Neural Networks and Learning Systems, IEEE
Transactions On Cybernetics, Information Sciences, and WIREs Data Ming
and Knowledge Discovery.

